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Abstract
The generation of photons in a three-dimensional rectangular cavity with two
moving boundaries is studied by using the multiple scale analysis (MSA). It
is shown that the number of photons are enhanced for the cavity whose walls
oscillate symmetrically with respect to the center of the cavity. The non-
stationary Casimir effect is also discussed for the cavity which oscillates as a
whole.

PACS numbers: 42.50.Lc, 12.20.−m

1. Introduction

When two perfectly conducting plates are placed close to each other, the attractive force
appears between the parallel conductors due to the vacuum fluctuations as predicted a long
time ago by Casimir [1]. The corresponding vacuum energies and forces are static. Now let us
assume that the right boundary depends on time. In this case, the length of the cavity changes
in time, L = L(t). The most evident manifestation of dynamic behavior is the dependence of
the force on time. In an adiabatic situation, the time-dependent modified force is given by [2]

F = πh̄c

24L(t)
. (1)

More strikingly, when the right plate is in motion, it was theoretically predicted that photons
are generated in the empty cavity, because of the instability of the vacuum state of the
electromagnetic field in the presence of time-dependent boundary conditions [3–12]. A
number of virtual photons from the vacuum are converted into real photons. This phenomenon
is known as the dynamical Casimir effect or motion-induced radiation. However, there has
been no experimental verification for this effect up to now because of the technical difficulties.
There are a few proposed experiments for the detection of photons [13–15]. As it was discussed
in the literature, the best way to observe this effect is to vibrate one of the walls with one of
the resonant field frequencies. A one-dimensional cavity with two perfectly parallel reflecting
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walls, one of which is motionless and the other oscillating with a mechanical frequency equal
to a multiple of the fundamental optical resonance frequency of the static cavity, has been used
as a simple model to study the dynamical Casimir effect [4–6, 12]

L1(t) = 0, L2(t) = L(1 + ε sin �t), (2)

where the constant � is the external frequency, ε is a small parameter, the constant L is the
initial length of the cavity and L1(t) and L2(t) are the positions of the right and the left walls
at time t , respectively. The cavity is motionless initially and at some instant one mirror starts
to oscillate resonantly with a tiny amplitude.

Calculating the number of generated photons is a difficult task since one has to solve the
wave equation with the time-dependent boundary conditions. A lot of techniques have been
developed to deal with the problem. For example, averaging over fast oscillations [16, 17],
multiple scale analysis [18], the rotating wave approximation [19], and numerical techniques
[20] are applied to the dynamical Casimir problem.

The case of cavities with two moving mirrors was studied by a few authors [21–28].
Compared to the situation with a single oscillating mirror, it was found that radiation is
resonantly enhanced when the cavity oscillates as a whole, with its mechanical length kept
constant and when the cavity oscillates symmetrically with respect to the cavity center.
The radiation emitted by two oscillating walls in one dimension was studied by Dalvit and
Mazzitelli using the renormalization group method [23], by Dodonov using the method known
in the theory of parametrically excited systems [25] and by Lambrecht et al using the scattering
approach [28].

In this paper, we will study two moving boundary problems for a rectangular cavity
resonator in 3D. We will use multiple scale analysis (MSA) which provides us with a solution
valid for a period of time longer than that of the perturbative case, which is not suitable for
this problem since it breaks down after a small time because of the resonance terms. We
will investigate the two cases. In the first configuration, we will consider a rectangular cavity
resonator whose right and left walls in the x-direction move in exactly the same way,

L1(t) = εL sin �t, L2(t) = L(1 + ε sin �t). (3)

Initially, the length of the oscillating cavity is given by L2(t) − L1(t) = L. As time goes
on, the length of the cavity is not changed. This type of motion corresponds to the cavity
oscillating as a whole.

Second, we will consider a rectangular cavity resonator whose right and left walls in the
x-direction move opposite to each other,

L1(t) = −εL sin �t, L2(t) = L(1 + ε sin �t). (4)

We will show that the number of generated photons are enhanced for this system with the
parametric resonance case, in which the frequency of the wall is twice the frequency of some
unperturbed mode, say � = 2ωk .

This paper is organized as follows. Section 2 studies the field quantization in the case
of moving boundaries in one dimension. Section 3 reviews and applies the multiple scale
analysis. Section 4 studies the dynamical Casimir effect for a three-dimensional cavity.
Section 5 considers the cavity whose walls are oscillating symmetrically with respect to the
center of the cavity. Finally, the last section discusses the enhancement of the generated
photon number.
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2. Field quantization with fixed length

Consider a one-dimensional cavity formed by two perfect conductors. The right and the left
walls oscillate according to the formula given by (3). The cavity oscillates as a whole. The
field operator in the Heisenberg representation �(x, t) obeys the wave equation (c = 1)

∂2�

∂t2
− ∂2�

∂x2
= 0. (5)

The boundary conditions are given by

�(L1, t) = �(L2, t) = 0, (6)

which describes the moving boundary problem in field theory. The problem looks simple,
since the wave equation is the same whether the boundaries are moving or not. However, the
moving boundary conditions render the equation unsolvable by the usual means. Although
the solution of the wave equation is easy to find and well known, finding the exact solution
of the same problem endowed with the time-dependent boundary conditions is very difficult
and not known except for some special cases.

To solve the problem, we will transform the moving boundary conditions to the fixed
boundary conditions. Let us introduce a coordinate transformation as

q(t) = x − L1(t)

L
. (7)

As a result, the new time-independent boundary conditions for �(q, t) read

�(q = 0, t) = �(q = 1, t) = 0. (8)

With this coordinate transformation, the wave equation (5) is changed. Let us find the new
form of the wave equation. Under the coordinate transformation (7), the derivative operators
transform as

∂2
t → ∂2

t +
L̇1

2

L2
∂2
q − 2

L̇1

L
∂t∂q − L̈1

L
∂q,

∂2
x → 1

L2
∂2
q .

(9)

Here we use the notations ∂t ≡ ∂
∂t

, ∂q ≡ ∂
∂q

. By using the explicit forms of L1(t) and L2(t) (3),
the transformation of the time derivative operator up to the first order of ε can be approximated
as

∂2
t ≈ ∂2

t − ε(2� cos �t∂t∂q − �2 sin �t∂q). (10)

Substituting these into the wave equation, we get

1

L2

∂2�

∂q2
= ∂2�

∂t2
− ε

(
� cos �t

∂2�

∂q∂t
− �2 sin �t

∂�

∂q

)
. (11)

In the right-hand side of the equation, the term in the parenthesis is due to the time-dependent
boundary conditions. Now, we do not have to deal with the time-dependent boundary
conditions. However, we are left with a new equation.

Let us now solve the above equation subject to the fixed boundary conditions (8). The
field operator can be expanded as

�(q, t) =
∑

k

(
bk�k(q, t) + b

†
k�

�
k (q, t)

)
, (12)

where b
†
k and bk are the creation and the annihilation operators, respectively and �k(q, t)

is the corresponding mode function. We will follow the approach given in [29–31] to find
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the explicit form of functions �k(x, t). For an arbitrary moment of time, the mode function
satisfying the boundary conditions is expanded as

�k(q, t > 0) =
∑

n

ak
n(t) sin(nπq). (13)

Let us substitute it into equation (11) in order to find ak
n(t). Then, multiply the resulting

equation with sin(mπq) and integrate over q from 0 to 1. If we use the orthogonality relations,
we get an infinite set of coupled differential equations for ak

n after some algebra

äk
m + ω2

mak
m = ε

⎛
⎝4� cos �t

∑
n�=m

gnmȧk
n − 2�2 sin �t

∑
n�=m

gnmak
n

⎞
⎠ , (14)

where ωm = mπ/L and the antisymmetric coefficient is given by gnm = mn(1−(−1)m+n)

m2−n2 for
m �= n.

In the following section, we will solve the above equation. To do this, we prefer to use
the multiple scale analysis method.

3. Multiple scale analysis (MSA)

Conventional weak-coupling perturbation theory suffers from problems that arise from
resonant terms in the perturbation series. The effects of the resonance could be insignificant on
short time scales but become important on long time scales. Perturbation methods generally
break down after a small time whenever there is a resonance that leads to what are called
secular terms. In equation (14), this happens for those particular values of external frequency
� such that there is a resonant coupling with the eigenfrequencies of the static cavity. To
avoid such problems, we will use multiple-scale analysis (MSA), a powerful and sophisticated
perturbative method valid for longer times. Multiple-scale perturbation theory provides a good
description of our system.

The trick is to introduce a new variable τ = εt . This variable is called the slow time
because it does not become significant in the small time. The functional dependence of ak

m on
t and ε is not disjoint because it depends on the combination of εt as well as on the individual
t and ε. The time variables t and τ are treated independently in MSA. Thus, in place of ak

m(t),
we write ak

m(t, εt). Let us expand ak
m in the form of a power series in ε

ak
m(t) = ak(0)

m (t, τ ) + εak(1)
m (t, τ ) + ε2ak(2)

m (t, τ ) + . . . . (15)

To this end, we change the independent variable in the original equation from t to τ . Using
the chain rule, we have d

dt
→ ∂

∂t
+ ε ∂

∂τ
.

Up to the first order of ε, the derivatives with respect to the time scale t are given by

ȧk
m = ∂ta

k(0)
m + ε

(
∂τ a

k(0)
m + ∂ta

k(1)
m

)
äk

m = ∂2
t ak(0)

m + ε
(
2∂τ ∂ta

k(0)
m + ∂2

t ak(1)
m

)
, (16)

where a dot denotes time derivation with respect to t as usual. Let us substitute these into
equation (14). Then, we see that our original ordinary differential equation is replaced by a
partial differential equation. It may appear that the problem has been complicated. But, as
will be seen below, there are many advantages of this method. To zeroth order in ε, we get a
well-known equation in physics,

äk(0)
m + ω2

mak(0)
m = 0. (17)

To first order in ε, we obtain the following equation:

äk(1)
m + ω2

mak(1)
m = −2∂t∂τ a

k(0)
m + 4� cos(�t)

∑
n�=m

gnmȧk(0)
n − 2�2 sin(�t)

∑
n�=m

gnmak(0)
n . (18)
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The solution of the former one can be found easily

ak(0)
m (t, τ ) = Ak

m(τ) e−iωmt + Bk
m(τ) eiωmt . (19)

Note that Ak
m(τ) and Bk

m(τ) are not constants but functions of the slow time scales τ . The
initial conditions are given by

Ak
m(τ = 0) = 1√

2ωk

δm,k Bk
m(τ = 0) = 0. (20)

Let us now solve equation (18). We look for the oscillations of the cavity that could enhance
the number of generated photons by means of resonance effects for some specific external
frequencies. To enhance the number of photons, let us now assume the resonance condition,
� = pπ/L, where p = 1, 2, . . . . It is well known that, in the resonance conditions, the
number of generated photons grows very much in time.

Let us substitute the zeroth-order solution (19) into the right-hand side of equation (18)
and then use the following relations: 2i sin �t = (ei�t − e−i�t ), 2 cos �t = (ei�t + e−i�t ). It
can be seen that the right-hand side contains terms that produce secular terms. For a uniform
expansion, these secular terms must vanish. In other words, any term with e±iωmt on the
right-hand side must vanish. If not, these terms would be in resonance with the left-hand
side term and secularities would appear. After imposing the requirement that no term e−iωmt

appear, we get

∂τA
k
m + G−

p+m,mAk
p+m − G+

m−p,mAk
m−p − G−

p−m,mBk
p−m = 0, (21)

where Gi,j is defined as

G∓
i,j = � ∓ 2ωi

2ωj

�gij . (22)

In the similar way, the fact that no secularities should arise from the term with eiωmt leads to

−∂τB
k
m − G−

p+m,mBk
p+m + G+

m−p,mBk
m−p + G−

p−m,mAk
p−m = 0. (23)

To this end, let us give the formula for the number of generated photons [7, 32]

〈Nn〉 =
∑

k

2ωn

∣∣Bk
n

∣∣2
. (24)

We will now analyze the solutions of equations (21), (23) for a given p.

3.1. Analysis of solution

As a special case, let us study the above equations when m = p. In this case, equations (21),
(23) are reduced to the following simple ones:

∂τA
k
p + G−

2p,pAk
2p = 0 (25)

∂τB
k
p + G−

2p,pBk
2p = 0. (26)

To find the solution, we should also find the corresponding differential equations for A2p, B2p.
Substituting m = 2p in (21), (23) gives

∂τA
k
2p + G−

3p,2pAk
3p − G+

p,2pAk
p = 0 (27)

∂τB
k
2p + G−

3p,pBk
3p − G+

p,2pBk
p = 0. (28)

Note that since p − m → p − 2p < 0, the term with Bk
p−m vanishes. As can be seen easily,

we need the equations Ak
3p and Bk

3p to solve these differential equations. In fact, there is no

5
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upper cutoff. However, these equations are not coupled equations. Ak
m and Bk

m are not coupled
to each other. So, we say that no photons with ωp, ω2p, . . . are generated for a given external
frequency � = πp/L. But this does not mean that photons are not generated. For example,
photons with ωp+1 are produced. To calculate the number of photons in this mode, we should
solve (21), (23) when m = p+1. As was seen above, we are left with infinitely many equations
since there is no cutoff. This is due to the fact that the spectrum of a one-dimensional cavity
is equidistant. Intermode coupling produces resonant creation in the other modes. So, the
spectrum does not have an upper frequency cutoff.

To sum up, photons are produced resonantly in all modes except m = p, 2p, . . . . In the
following section, we will study the dynamical Casimir effect for a three-dimensional cavity
whose spectrum is not equidistant.

4. The dynamical Casimir effect in 3D

So far, we have restricted ourselves to the one-dimensional case. We will now study the
dynamical Casimir effect for the three-dimensional geometries. We will show that multiple
scale analysis works very well to calculate the number of generated photons.

Let us first define our problem. Consider a rectangular cavity resonator with perfectly
conducting walls. Initially the three of the them are placed at x = 0, y = 0 and z = 0 while
the other three walls are at x = Lx, y = Ly and z = Lz. At time t = 0, the cavity starts
oscillating in the x-direction as a whole. The positions of the six walls at any time are given
by

L1x(t) = εLx sin �t, L2x(t) = Lx(1 + ε sin �t), L1y(t) = 0,

L2y(t) = Ly, L1z(t) = 0, L2z(t) = Lz,
(29)

where the constant � is the frequency of the oscillation and ε is a small parameter. The volume
of the cavity resonator is constant in time and given by V = LxLyLz.

As in the one-dimensional case, we will study with the coordinates transformed from the
fixed ones to the moving ones, (x, y, z) → (q, y, z). The relation between q and x is given by
q = (x − L1x

)/Lx .
We will first study the dynamical Casimir effect for the scalar field and then for the vector

field.

4.1. The scalar field in 3D

In this section, we will apply MSA to the scalar field in three dimensions. The cavity resonator
oscillates in the x-direction (29). So, the scalar field operator subject to the following boundary
conditions:

�(L1x, y, z, t) = �(L2x, y, z, t) = �(x, 0, z, t) = �(x,Ly, z, t)

= �(x, y, 0, t) = �(x, y, Lz, t) = 0, (30)

which describes the moving boundary problem in three dimensions. The field operator in the
Heisenberg representation �(x, y, z, t) obeys the wave equation (c = 1) in three dimensions

∇2� = ∂2�

∂t2
. (31)

We can rewrite this equation in the moving coordinate systems, (q, y, z). The transformation
of the time derivative operator is given in (10). Hence, the wave equation is transformed to

∂2�

∂y2
+

∂2�

∂z2
+

1

L2

∂2�

∂q2
= ∂2�

∂t2
− ε

(
2� cos(�t)

∂2�

∂q∂t
− �2 sin(�t)

∂�

∂q

)
. (32)

6
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In one dimension, the expansion of the solution of the wave equation was given by formula
(12). In three dimension, it has obvious generalization. The scalar field operator can be
expanded as

�(q, y, z, t) =
∑

kx ,ky ,kz

bkxkykz
�kxkykz

(q, y, z, t) + H.C., (33)

where bkxkykz
is the annihilation operator and �kxkykz

(q, y, z, t) is the corresponding mode
function. Let us assume that, for an arbitrary moment of time, the explicit form of function
�kxkykz

(q, y, z, t) is expanded as

�kxkykz
(q, y, z, t > 0) =

∑
nx,ny ,nz

a
kxkykz

nxnynz
(t) sin(nxπq) sin

(
nyπ

Ly

y

)
sin

(
nzπ

Lz

z

)
. (34)

Substituting these into the transformed wave equation (32) and using the orthogonality
relations, we get an infinite set of coupled differential equations for a

kxkykz

nxnynz
(t) after some

algebra

ä
kxkykz

mxnynz
+ ω2

mxnynz
a

kxkykz

mxnynz

= ε

⎛
⎝4� cos(�t)

∑
nx �=mx

gnxmx
ȧ

kxkykz

nxnynz
− 2�2 sin(�t)

∑
nx �=mx

gnxmx
a

kxkykz

nxnynz

⎞
⎠ , (35)

where ω2
mxnynz

= π2
(
m2

x/L
2
x + n2

y/L
2
y + n2

z/L
2
z

)
and gnxmx

= mxnx(1−(−1)mx +nx )

m2
x−n2

x
for mx �= nx . In

fact, this equation is the three-dimensional generalization of (14).
We will apply the multiple scale analysis to solve this equation. Fortunately, there is

no need to go into the detail. The generalization of equation (18) to three dimensions is
straightforward

ä
kxkykz(1)
mxnynz

+ ω2
mxnynz

a
kxkykz(1)
mxnynz

= −2∂τ ∂ta
kxkykz(0)
mxnynz

+ 4� cos(�t)
∑

nx �=mx

gnxmx
ȧ

kxkykz(0)
nxnynz

− 2�2 sin(�t)
∑

nx �=mx

gnxmx
a

kxkykz(0)
nxnynz

, (36)

where

a
kxkykz(0)
mxnynz

= A
kxkykz

mxnynz
(τ ) exp(−iωmxnynz

t) + B
kxkykz

mxnynz
(τ ) exp(iωmxnynz

t), (37)

A
kxkykz

mxnynz
(τ ) and B

kxkykz

mxnynz
(τ ) depend on the slow time parameter τ . The initial conditions are

given by

A
kxkykz

nxnynz
(τ = 0) = 1√

2ωkxkykz

δkx ,nx
δky ,ny

δkz,nz
;

B
kxkykz

nxnynz
(τ = 0) = 0.

(38)

We will derive an equation like (21), (23). Substituting (37) into (36) and eliminating the
secular terms from the equation, we get

∂τA
kxkykz

mxnynz
+ G−

(n′
xnynz),(mxnynz)

A
kxkykz

n′
xnynz

− G+
(n′′

xnynz),(mxnynz)
A

kxkykz

n′′
xnynz

−G−
(n′′′

x nynz),(mxnynz)
B

kxkykz

n′′′
x nynz

= 0 (39)

−∂τB
kxkykz

mxnynz
− G−

(n′
xnynz),(mxnynz)

B
kxkykz

n′
xnynz

+ G+
(n′′

xnynz),(mxnynz)
B

kxkykz

n′′
xnynz

+ G−
(n′′′

x nynz),(mxnynz)
A

kxkykz

n′′′
x nynz

= 0, (40)

7
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where the three-dimensional generalization of the definitions G∓
ij (22) is given by

G∓
(rx ,ny ,nz),(mx,ny ,nz)

= � ∓ 2ωrxnynz

2ωmxnynz

�grxmx
. (41)

It should be noted that n′
x, n

′′
x, n

′′′
x are positive integers and they satisfy

ωn′
xnynz

= � + ωmxnynz
,

ωn′′
xnynz

= −� + ωmxnynz
,

ωn′′′
x nynz

= � − ωmxnynz
.

(42)

In the one-dimensional case, Am,Am∓p,Am∓2p, . . . and Bm,Bm∓p, Bm∓2p, . . . are strongly
coupled to each other. However, in three dimensions, only a few modes are coupled to each
other. This is because there are only a few positive integers n′

x, n
′′
x, n

′′′
x satisfied by equations

(42). So, it is possible to solve equations (39), (40) exactly since only a few modes are coupled.
In what follows, we will give some specific examples.

4.1.1. Examples. For simplicity, assume that the cavity is cubic, Lx = Ly = Lz. We
have a freedom to choose the coupled modes. For example, assume that inter-mode coupling
occurs between (n′′′

x , ny, nz) and (mx, ny, nz). So we can determine � from (42). As an
example, we are interested in the following two modes: (1, 1, 1) and (2, 1, 1). Choose
� = (

√
3 +

√
6)π/Lx . Let us solve equations (39), (40) for these modes. Hence,

∂τA
kxkykz

211 − G−
(1,1,1),(2,1,1)B

kxkykz

111 = 0; −∂τB
kxkykz

211 + G−
(1,1,1),(2,1,1)A

kxkykz

111 = 0. (43)

To solve the above differential equations, we also need the equations for ∂τA1,1,1 and ∂τB1,1,1.
Using again (39), (40), we get

∂τA
kxkykz

111 − G−
(2,1,1),(1,1,1)B

kxkykz

211 = 0; −∂τB
kxkykz

111 + G−
(2,1,1),(1,1,1)A

kxkykz

211 = 0. (44)

The solution of equations (43), (44) with the boundary conditions (38) can readily be found.(
A111

111

A211
211

)
=

( 1√
2ω111

cosh(λτ)

1√
2ω211

cosh(λτ)

)
;

(
B211

111

B111
211

)
=

⎛
⎝G−

(2,1,1),(1,1,1)

λ
√

2ω211
sinh(λτ)

G−
(1,1,1),(2,1,1)

λ
√

2ω111
sinh(λτ)

⎞
⎠ , (45)

where the constant λ is defined as λ2 = G−
(2,1,1),(1,1,1)G

−
(1,1,1),(2,1,1). With the help of number

operator (24)

〈Nnxnynz
〉 =

∑
kx

∑
ky

∑
kz

2ωnxnynz

∣∣B(kxkykz)
nxnynz

∣∣2
(46)

we find the number of generated photons for each mode

〈N1,1,1〉 = 〈N2,1,1〉 = sinh2(λτ). (47)

4.2. Vector field

Here, we will study the dynamical Casimir effect for the vector field in three dimensions.
Maxwell’s equations describe electromagnetic waves as having two components, the electric
field, E(x, y, z), and the magnetic field, H(x, y, z). Modes in a cavity resonator are said to
be transverse. It is convenient to classify the fields as transverse magnetic (TM) or transverse
electric (TE) according to whether E or H was transverse to the direction of oscillation.
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We will study the dynamical Casimir effect for the transverse electric modes. Before
applying our formalism, let us first write TE modes in static case. In the mode TE, for t < 0
the cavity is static, and each mode is given by

Ax = 0

Ay =
∑

nx,ny ,nz

A0y
exp(−iωnxnynz

t) sin

(
nxπx

Lx

)
cos

(
nyπy

Ly

)
sin

(
nzπz

Lz

)

Az =
∑

nx,ny ,nz

A0z
exp(−iωnxnynz

t) sin

(
nxπx

Lx

)
sin

(
nyπy

Ly

)
cos

(
nzπz

Lz

)
,

(48)

where nx, ny, nz are positive integers. The constants A0y
and A0z

satisfy the coulomb gauge
condition, A0y

ny/Ly + A0z
nz/Lz = 0.

At time t = 0, the rectangular cavity resonator starts to oscillate in the x-direction as
a whole. The positions of the six walls are given by (29). Let us find the components of
the field operator at any time. We will study with the moving coordinate systems (q, y, z).
The field operator A(q, y, z, t) associated with a vector potential satisfies the transformed
three-dimensional wave equation (c = 1)

1

L2
x

∂2 �A
∂q2

+
∂2 �A
∂y2

+
∂2 �A
∂z2

= ∂2 �A
∂t2

− ε

(
2� cos �t

∂2 �A
∂q∂t

− �2 sin �t
∂ �A
∂q

)
. (49)

When t > 0, the solution of the components of the field operator may be expanded in terms
of the orthogonal basis functions.

Ax = 0

Ay =
∑

nx,ny ,nz

A0y
a

kxkykz

nxnynz
(t) sin (nxπq) cos

(
nyπy

Ly

)
sin

(
nzπz

Lz

)
,

Az =
∑

nx,ny ,nz

A0z
a

kxkykz

nxnynz
(t) sin (nxπq) sin

(
nyπy

Ly

)
cos

(
nzπz

Lz

)
,

(50)

where the time-dependent function a
kxkykz

nxnynz
(t) is to be determined later. Let us substitute

equation (50) into the transformed wave equation (49). Using the orthogonality relations, we
obtain the dynamical equations.

ä
kxkykz

mxnynz
+ ω2

mxnynz
a

kxkykz

mxnynz

= ε

⎛
⎝4� cos(�t)

∑
nx �=mx

gnxmx
ȧ

kxkykz

nxnynz
− 2�2 sin(�t)

∑
nx �=mx

gnxmx
a

kxkykz

nxnynz

⎞
⎠ . (51)

As can be seen, this equation and equation (35) for the scalar field are the same. So, for the
dynamical Casimir effect problem, both scalar and vector field cases can be treated in the similar
way. Multiple scale analysis has already been applied to the scalar field. So, equations (39),
(40) are also valid for TE modes. We will study the photon generation for the TE modes by
giving an example.

We demand that the generated photons have the modes (2, 2, 1) and (3, 2, 1). These two
modes are coupled if we choose � = (3 +

√
14)π/Lx .

After performing the same calculations with the help of MSA we obtain,(
A221

221

A321
321

)
=

⎛
⎝

1√
2ω2,2,1

cosh(λ′τ)

1√
2ω3,2,1

cosh(λ′τ)

⎞
⎠ ;

(
B221

221

B321
321

)
=

⎛
⎜⎝

G−
(3,2,1),(2,2,1)

λ′
√

2ω2,1,1
sinh(λ′τ)

G−
(2,2,1),(3,2,1)

λ′
√

2ω1,1,1
sinh(λ′τ)

⎞
⎟⎠ , (52)

9
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where λ′2 = G−
321,221G

−
221,321. Then, we calculate the number of generated photons (24)

〈N2,2,1〉 = 〈N3,2,1〉 = sinh2(λ′τ). (53)

Here, we have performed analytical calculations to find the number of generated photons by
using MSA. To this end, it should be mentioned that Ruser found perfect agreement between the
numerical results and analytical predictions obtained by MSA [33]. The equations of motion
for TE modes in a dynamical rectangular cavity are equivalent to the equations of motion for a
scalar field with a time-dependent Dirichlet boundary conditions. More complicated boundary
conditions, the so-called Neumann boundary conditions, arises when studying TM modes.

5. Enhancement of photon numbers

So far, we have considered the cavity resonator oscillated as a whole. We will now study the
case of symmetric oscillation with respect to the center of the cavity in the x-direction.

L1x(t) = −εLx sin �t, L2x(t) = Lx(1 + ε sin �t), L1y(t) = 0,

L2y(t) = Ly, L1z(t) = 0, L2z(t) = Lz.
(54)

In this case, the volume of the cavity changes in time. The two walls in the x-direction move
opposite to each other. For this configuration, only the scalar field will be treated. This is
because, as was pointed above, the equations for a

kxkykz

nxnynz
(t) are the same for the scalar field

and the vector field. In other words, the number of produced TE-mode photons equals the
number of produced scalar particles in a three-dimensional cavity. So, it is enough to study
the dynamical Casimir effect for the scalar field to understand the underlying mechanism. For
an arbitrary moment of time, the mode function for the scalar field is expanded as

�kxkykz
(t > 0) =

∑
nxnynz

a
kxkykz

nxnynz
(t)

√
Lx

L2x − L1x

sin(nxπq) sin

(
nyπ

Ly

y

)
sin

(
nzπ

Lz

z

)
, (55)

where q(t) = x−L1x

L2x−L1x
. If we substitute it into the wave equation and use the orthogonality

relations, we get

ä
kxkykz

mxnynz
+ ω2

mxnynz
(t)a

kxkykz

mxnynz

= ε

⎛
⎝4� cos(�t)

∑
nx �=mx

gnxmx
ȧ

kxkykz

nxnynz
− 2�2 sin(�t)

∑
nx �=mx

gnxmx
a

kxkykz

nxnynz

⎞
⎠, (56)

where ω2
mxnynz

(t) = π2
(
m2

x/(L2x − L1x)
2 + n2

y

/
L2

y + n2
z

/
L2

z

)
and the new antisymmetric

coefficient is given by gnxmx
= mxnx(1+(−1)mx +nx )

n2
x−m2

x
for mx �= nx .

There are two differences between (35) and (56). First, the antisymmetric coefficient
vanishes when mx + nx is an even number when the cavity oscillates as a whole (given below
(35)). However, it vanishes when mx + nx is an odd number when the cavity oscillates
symmetrically. Second, the term ω2

mxnynz
in the left-hand side of the former one is constant

while it is time dependent for the latter one. The time-dependent character of it gives a
modification of equation (36)

ä
kxkykz(1)
mxnynz

+ ω2
mxnynz

a
kxkykz(1)
mxnynz

= −2∂τ ∂ta
kxkykz(0)
mxnynz

+ 4
π2m2

x

L2
x

sin(�t)a
kxkykz(0)
mxnynz

+ 4� cos(�t)
∑

nx �=mx

gnxmx
ȧ

kxkykz(0)
nxnynz

− 2�2 sin(�t)
∑

nx �=mx

gnxmx
a

kxkykz(0)
nxnynz

. (57)
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The second term in the right-hand side is new. Let us study the the parametric resonance case,
� = 2ωmxnynz

. Then, MSA gives equations for A(τ) and B(τ)

∂τA
kxkykz

mxnynz
+

π2m2
x

L2
xωmx

B
kxkykz

mxnynz
+ G−

(nxnynz),(mxnynz)
A

kxkykz

nxnynz
= 0 (58)

−∂τB
kxkykz

mxnynz
− π2m2

x

L2
xωmx

A
kxkykz

mxnynz
− G−

(nxnynz),(mxnynz)
B

kxkykz

nxnynz
= 0, (59)

where G−
(nxnynz),(mxnynz)

was defined in (41) and nx is a positive integer which satisfy the
following relation:

ωnxnynz
= 3ωmxnynz

. (60)

Let us give some examples. First, we are interested in the uncoupled modes. For example,
consider the mode (1, 1, 0). If we solve (58), (59) endowed with the initial conditions (38),
we get

A110
110(τ ) = 1√

2ω110
cosh(λτ) (61)

B110
110 (τ ) = − 1√

2ω110
sinh(λτ), (62)

where λ = π√
2Lx

. The number of photons is calculated (24)

〈N1,1,0〉 = sinh2(λτ). (63)

Compare this result with the one obtained in [18] where the authors assumed that only one
wall is oscillating in the parametric resonance case. They found that 〈N1,1,0〉 = sinh2(λDτ),
where λD = λ/2.

The number of generated photons is the same for the following two systems: the cavity
with a single oscillating mirror with 2ε and the cavity with two oppositely oscillating mirrors
with ε. Instead of increasing ε by factor 2, the static wall is allowed to oscillate as described
above.

As a second example consider the mode (1, 1, 1). In this case, according to (60), the
mode (5, 1, 1) is coupled. The solutions of (58), (59) become

A511
511(τ ) = 1√

2ω511
δ5,kx

cosh(λ1τ) (64)

B511
511 (τ ) = − 1√

2ω511
δ5,kx

sinh(λ1τ), (65)

A
kx11
111 (τ ) = 0.681

δkx,5√
2ω511

(sinh(λ1τ) − sinh(λ2τ)) +
δkx,1√
2ω111

cosh(λ2τ)

B
kx11
111 (τ ) = 0.681

δkx,5√
2ω511

(cosh(λ2τ) − cosh(λ1τ)) − δkx,1√
2ω111

sinh(λ2τ),

(66)

where λ1 = π
Lx

25√
27

and λ2 = π
Lx

1√
3
. Then, the number of photons

〈N1,1,1〉 = sinh2(λ2τ) + 0.1549(cosh2(λ2τ) + cosh2(λ1τ) − 2 cosh2(λ2τ) cosh2(λ1τ))

〈N5,1,1〉 = sinh2(λ1τ).
(67)

As a result, compared to the result obtained for a single mirror, the radiated photon flux is
enhanced.
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6. Discussion

Kim, Brownell and Onofrio proposed an experiment for the detection of the dynamical Casimir
effect [13]. They considered a three-dimensional cavity with a single moving boundary. Taking
into account the limitation by the photon leakage of the cavity expressed through the optical
quality factor Qopt, which saturates at the hold time τ = Qopt/ω, they gave the formula for
the maximum photon population for the parametric case and uncoupled mode as

〈N〉 = sinh2(2Qoptεt). (68)

We have shown that if the two walls are moving opposite to each other with the same
frequencies and amplitudes, ε should be replaced by 2ε. Hence

〈N〉 = sinh2(4Qoptεt). (69)

The number of generated photons in the cavity is very sensitive to the product εQopt. In
current technology, the maximum value εQopt = 1 [13]. The equation (68) gives the number
of generated photons N = 13 if only one wall is in motion. If two walls move symmetrically
with respect to the center of the cavity, (69) gives the number of generated photons N = 745.

The difference between the two cases is great if εQopt = 2, which may be possible in the
future. In this case, the first formula (68) gives N = 745. However, the second one (69) gives
a large number of photons N = 2.2106.

From the experimental point of view, we think that the systems with two moving walls
will play an important role for the detection of generated photons. It may turn out to be
very difficult to make the two walls oscillate symmetrically at exactly the same frequencies.
The case of slightly off resonant external frequency, i.e, � → � + h, where the detuning
frequency h is sufficiently small h � �, was already considered in the literature [32, 34].
It was shown that exponential photon production can still be observed provided that certain
threshold conditions are satisfied.

References

[1] Casimir H B G 1948 Proc. K. Ned. Akad. Wet. 51 793
[2] Bordag M, Mohideen U and Mostepanenko V M 2001 Phys. Rep. 353 1
[3] Sassaroli E, Srivastava Y N and Widom A 1994 Phys. Rev. A 50 1027
[4] Law C K 1994 Phys. Rev. Lett. 73 1931
[5] Meplan O and Gignoux C 1996 Phys. Rev. Lett. 76 408
[6] Cole C K and Schieve W C 1995 Phys. Rev. A 52 4405
[7] Dodonov V V 2001 Adv. Chem. Phys. 119 309
[8] Haro J and Elizalde E 2006 Phys. Rev. Lett. 97 130401
[9] Wegrzyn P 2007 J. Phys. B: At. Mol. Opt. Phys. 40 2621

[10] Alves D T and Granhen E R 2008 Phys. Rev. A 77 015808
[11] Srivastava Y N, Widom A, Sivasubramanian S and Ganesh M P 2006 Phys. Rev. A 74 032101
[12] Dodonov V V, Klimov A B and Man’ko V I 1990 Phys. Lett. A 149 225

Dodonov V V, Klimov A B and Nikonov D E 1993 J. Math. Phys. 34 2742
[13] Kim W-J, Brownell J H and Onofrio R 2006 Phys. Rev. Lett. 96 200402
[14] Braggio C et al 2005 Europhys. Lett. 70 754
[15] Liberato S D, Ciuti C and Carusotto F I 2007 Phys. Rev. Lett. 98 103602
[16] Dodonov V V and Klimov A B 1996 Phys. Rev. A 53 2664
[17] Ji J Y, Jung H H, Park J W and Soh K S 1997 Phys. Rev. A 56 4440
[18] Crocce M, Dalvit D A R and Mazzitelli F D 2002 Phys. Rev. A 66 033811
[19] Schutzhold R, Plunien G and Soff G 2002 Phys. Rev. A 65 043820

Schaller G, Schutzhold R, Plunien G and Soff G 2002 Phys. Rev. A 66 023812
[20] Ruser M 2005 J. Opt. B 7 100
[21] Lambrecht A, Jaekel M-T and Reynaud S 1998 Eur. Phys. J. D 3 95

12

http://dx.doi.org/10.1016/S0370-1573(01)00015-1
http://dx.doi.org/10.1103/PhysRevA.50.1027
http://dx.doi.org/10.1103/PhysRevLett.73.1931
http://dx.doi.org/10.1103/PhysRevLett.76.408
http://dx.doi.org/10.1103/PhysRevA.52.4405
http://dx.doi.org/10.1103/PhysRevLett.97.130401
http://dx.doi.org/10.1088/0953-4075/40/13/008
http://dx.doi.org/10.1103/PhysRevA.77.015808
http://dx.doi.org/10.1103/PhysRevA.74.032101
http://dx.doi.org/10.1016/0375-9601(90)90333-J
http://dx.doi.org/10.1063/1.530093
http://dx.doi.org/10.1103/PhysRevLett.96.200402
http://dx.doi.org/10.1209/epl/i2005-10048-8
http://dx.doi.org/10.1103/PhysRevLett.98.103602
http://dx.doi.org/10.1103/PhysRevA.53.2664
http://dx.doi.org/10.1103/PhysRevA.56.4440
http://dx.doi.org/10.1103/PhysRevA.66.033811
http://dx.doi.org/10.1103/PhysRevA.65.043820
http://dx.doi.org/10.1103/PhysRevA.66.023812
http://dx.doi.org/10.1007/s100530050152


J. Phys. A: Math. Theor. 41 (2008) 265401 C Yuce and Z Ozcakmakli

[22] Ji J Y, Jung H H and Soh K S 1998 Phys. Rev. A 57 4952
[23] Dalvit D A R and Mazzitelli F D 1999 Phys. Rev. A 59 3049
[24] Ruser M 2006 Phys. Rev. A 73 043811
[25] Dodonov V V 1998 J. Phys. A: Math Gen. 31 9835
[26] Ling L and Bo-Zang L 2002 Chin. Phys. Lett. 19 1061
[27] Mundarain D F and Neto P A M 1998 Phys. Rev. A 57 1379
[28] Lambrecht A, Jaekel M T and Reynaud S 1996 Phys. Rev. Lett. 77 615
[29] Razavy M and Terning J 1985 Phys. Rev. D 31 307
[30] Calucci G 1992 J. Phys. A: Math. Gen. 25 3873
[31] Law C K 1994 Phys. Rev. A 49 433
[32] Crocce M, Dalvit D A R and Mazzitelli F D 2001 Phys. Rev. A 64 013808
[33] Ruser M 2006 Phys. Rev. A 73 043811
[34] Dodonov V V 1998 Phys. Rev. A 58 4147

13

http://dx.doi.org/10.1103/PhysRevA.57.4952
http://dx.doi.org/10.1103/PhysRevA.59.3049
http://dx.doi.org/10.1103/PhysRevA.73.043811
http://dx.doi.org/10.1088/0305-4470/31/49/008
http://dx.doi.org/10.1088/0256-307X/19/8/310
http://dx.doi.org/10.1103/PhysRevA.57.1379
http://dx.doi.org/10.1103/PhysRevLett.77.615
http://dx.doi.org/10.1103/PhysRevD.31.307
http://dx.doi.org/10.1088/0305-4470/25/13/031
http://dx.doi.org/10.1103/PhysRevA.49.433
http://dx.doi.org/10.1103/PhysRevA.64.013808
http://dx.doi.org/10.1103/PhysRevA.73.043811
http://dx.doi.org/10.1103/PhysRevA.58.4147

	1. Introduction
	2. Field quantization with fixed length
	3. Multiple scale analysis (MSA)
	3.1. Analysis of solution

	4. The dynamical Casimir effect in 3D
	4.1. The scalar field in 3D
	4.2. Vector field

	5. Enhancement of photon numbers
	6. Discussion
	References

